合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 表面张力辅助制造陶瓷厚膜,突破传统陶瓷膜制备方法的局限
> 表面活性剂是否对斥水性土壤的润湿性有影响?——材料和方法
> 烷基-β-D-吡喃木糖苷溶解性、表面张力、乳化性能等理化性质研究(二)
> 医学检测用涂片装置新设计可降低液体因表面张力形成的回弹溅起
> 新调和燃料添加剂表面张力下降,燃烧更充分
> BOPP薄膜制备,印刷表层的表面张力多少合适
> 荔枝视频在线观看视频最新分析气润湿反转剂对缓解煤层水锁效应、解吸速率影响(三)
> 农药助剂对70%吡虫啉水分散粒剂在小麦叶片上附着性能的影响
> 基于深度神经网络模型分析明胶溶液荷电量与表面张力之间的关系(二)
> FYXF-3煤粉悬浮剂润湿吸附性能、伤害性能及在煤层气压裂改造现场的实施方案(三)
推荐新闻Info
-
> 明确岩心孔喉大小及分布,构建低渗透油藏CO2驱开发全过程动态预测模型(二)
> 明确岩心孔喉大小及分布,构建低渗透油藏CO2驱开发全过程动态预测模型(一)
> 序列结构决定性能:深度解析阳离子聚丙烯酸酯浮选剂的构效关系及表征关键
> 酯化度与分子质量对果胶乳化性能、聚集体结构、界面性质的影响规律(三)
> 酯化度与分子质量对果胶乳化性能、聚集体结构、界面性质的影响规律(二)
> 酯化度与分子质量对果胶乳化性能、聚集体结构、界面性质的影响规律(一)
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(三)
> 基于孔溶液表面张力和黏度测试揭示增稠剂对流变参数和气泡结构的影响机制(二)
> 基于孔溶液表面张力和黏度测试揭示增稠剂对流变参数和气泡结构的影响机制(一)
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(二)
一种新表面张力改性方法让全固态电池性能更优
来源:材料科学与工程 浏览 1371 次 发布时间:2022-06-21
全固态锂电池(ASSB)因其在安全性和能量密度方面的优势,有可能引发电动汽车的电池革命。各种可能的固体电解质的筛选表明,石榴石电解质由于其高的离子导电性和优异的(电)化学稳定性而具有很好的应用前景。然而,石榴石电解质的一个主要挑战是与锂金属阳极接触不良,导致极大的界面阻抗和严重的锂枝晶生长。
来自南京工业大学等单位的研究人员,提出了一种新颖的表面张力改性方法,通过在熔融Li中加入微量的Si3N4(1wt%)来调节Li|石榴石的表面张力,从而形成亲密的Li|石榴石界面。Li-Si-N熔体不仅可以将Li|石榴石界面由点对点接触转变为连续的面对面接触,而且可以使Li剥离/沉积过程中的电场分布趋于均匀,从而显著降低其界面阻抗(25°C时为1Ωcm2),提高其循环稳定性(在0.4 mA cm−2时为1000h)和临界电流密度(1.8mA cm−2)。具体地说,与LiFePO4阴极配对的全固态全电池在2C时提供了145mAh g−1的高容量,在1C循环100次后保持了97%的初始容量。
论文链接:http://doi.org/10.1002/adfm.202101556
综上所述,本文首次提出了用微量纳米Si3N4(1wt%)调节熔融Li的表面张力来修饰Li|石榴石界面的实验。从Li-Si-N系相图出发,结合XRD和XPS分析,发现当加热1wt%Si3N4和Li金属的混合物时,Li3N、LiSi2N3和LixSi颗粒的形成是一致的,生成的复合材料称为Li-Si-N熔体。Li-Si-N熔体通过两种方式极大地改善了与石榴石的界面接触:
1)降低了熔融Li的表面张力,使其易于扩散到石榴石颗粒上,实现了良好的物理接触;
2)降低了Li|石榴石的界面形成能,使其具有良好的化学接触。用1wt%Si3N4降低表面张力起主导作用。
如预期的那样,原始Li熔体和Li-Si-N熔体在LLZTO芯块上的接触角分别约为120°和30°。SEM图像显示,在熔融Li中引入1wt%Si3N4使Li|LLZTO界面从点对点接触转变为亲密的面对面接触,使得Li电镀/剥离过程中的电流分布均匀。密度泛函理论计算表明,熔体Li中的Li3N和LiSi2N3同时降低了Li|LLZTO的界面形成能。结果表明,改性后的固态Li/LLZTO界面在25°C下的界面阻抗为1Ωcm2,CCD值为1.8 mA cm−2。在0.4 mA cm−2下连续充放电1000h后,没有观察到枝晶Li渗入电解层。(文:SSC)
图1.示意图显示了a)纯Li熔体和b)Li-Si-N熔体的制备及其与石榴石颗粒的界面接触行为。
图2.Li-Si-N复合材料的特性分析。
图3.界面形成能的密度泛函计算
图4.a)室温下Li|LLZTO|Li和Li-Si-N|LLZTO|Li-Si-N电池的交流阻抗谱比较。
图5.a,b)全固态Li-Si-N|LLZTO|PEO-LiFePO4电池的制备和组装示意图。