合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> pH、温度、盐度、碳源对 解烃菌BD-2产生物表面活性剂的影响——摘要、前言
> 水、常温液态金属等9种流体对液滴碰撞壁面影响的数值研究(三)
> 界面张力作用下开发MAPbBr3钙钛矿单晶制备方法
> 低渗透油藏表面活性剂降压增注效果影响因素
> 基于表面张力测试仪研究表面活性剂促进浮选精煤脱水的机理(一)
> 温度对甜菜碱短链氟碳表面活性剂表面张力、铺展、发泡性能影响(四)
> 3种不同类型喷雾助剂对氟啶虫胺腈药液表面张力及在苹果叶片润湿持留性能测定(二)
> 地下水质量标准(GB/T 14848-2017)
> 基于LB膜技术制备胶原蛋白肽覆层羟基磷灰石的新方法——结果与讨论、结论
> 采用壳聚糖-三聚磷酸酯-百里香纳米颗粒经热喷墨打印而成的新型活性包装材料——材料和方法
推荐新闻Info
-
> 荔枝视频在线观看视频最新和界面张力仪通用可能性及选择要点
> 荔枝视频在线观看视频最新和界面张力仪是通用的吗?
> 从润湿到粘附:临界表面张力(γc)如何重塑表界面科学
> 添加表面活性剂抑制瓦斯解吸效果及机理分析
> 常见表面活性剂分类、性质、水溶液润湿性、与表面张力间的关系
> 基于LB膜技术的仿生胶原膜模块化组装方法
> 明确岩心孔喉大小及分布,构建低渗透油藏CO2驱开发全过程动态预测模型(二)
> 明确岩心孔喉大小及分布,构建低渗透油藏CO2驱开发全过程动态预测模型(一)
> 序列结构决定性能:深度解析阳离子聚丙烯酸酯浮选剂的构效关系及表征关键
> 酯化度与分子质量对果胶乳化性能、聚集体结构、界面性质的影响规律(三)
去乙酰化槐糖脂生物表面活性剂的结构鉴定、理化性质及应用(三)
来源:应用化学 浏览 891 次 发布时间:2025-02-13
2结果与讨论
2.1乙酰化SLs和去乙酰化SLs组分
2类SLs同系物HPLC-MS/MS鉴定结果表明,乙酰化SLs含有14种同系物(图1A),去乙酰化SLs具有16种同系物(图1B)。
图1乙酰化SLs(A)和去乙酰化SLs(B)的HPLC-MS/MS总离子流图
相比较而言,去乙酰化SLs同系物的保留时间较短,说明这些同系物的极性增大。其中,乙酰化SLs同系物的总离子流图(图1A)中保留时间为23.6 min处的峰的丰度最高,质量分数为42.47%,其质谱碎片如图2A所示。质荷比(m/z)为689.3754的峰为具有C18∶1单不饱和脂肪酸部分的二乙酰化内酯型SLs的分子离子峰,m/z 711.3576为[M+Na]+峰,m/z 671.3644和653.3537分别为[M+H]+失去1个水分子和2个水分子的峰,m/z 485.3113和467.3006分别为[M+H]+失去1个己糖环和再失去1个水分子的峰。上述分析表明,保留时间为23.6 min的组分为带有单不饱和度的C18脂肪酸链的双乙酰化内酯型SLs,即,17-L-[(2-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)-O-]-十八碳烯酸-1,4-内酯-6′,6″-二乙酸酯。
图2(A)乙酰化SLs保留时间为23.6 min组分的质谱图.(B)去乙酰化SLs保留时间为20.3 min组分的质谱图.(C)去乙酰化SLs保留时间为9.4 min组分的质谱图.(D)去乙酰化SLs保留时间为7.6 min组分的质谱图
在去乙酰化SLs同系物的总离子流图中,保留时间为20.3 min的峰具有最高的丰度,达到16.96%,所对应的质谱碎片如图2B所示,其中,m/z 597.5090为[M+H]+峰,m/z 619.4906为[M+Na]+峰,该组分与保留时间为9.4 min的组分具有相同的[M+Na]+和[M+H]+峰(图2C),推测这2种组分可能为同分异构体;对于保留时间为9.4 min的质谱图(图2C),其中,m/z 619.3302和597.3479分别为[M+Na]+峰和[M+H]+峰,而m/z 435.2949和273.2423分别是[M+H]+失去1个和2个去乙酰化的己糖环(C6H10O5)形成的,m/z 273.2423(C16H33O3)是质子化的C16∶0羟基脂肪酸。上述分析表明,保留时间20.3和9.4 min的组分分别为ω型和ω-1型C16∶0的去乙酰化酸型SLs,即16-L-[(2'-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)-O-]-十六酸和15-L-[(2'-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基)-O-]-十六酸。
去乙酰化SLs保留时间为7.6 min质谱(图2D)中的离子m/z 1011.4614和m/z 989.4785分别为某组分的[M+Na]+峰和[M+H]+峰,[M+H]+峰连续失去2个己糖环基团得到离子m/z 827.4266和m/z 623.3640,然后继续失去1个单乙酰化己糖环基团得到离子m/z 461.3102,最后再失去1个己糖环基团得到离子m/z 299.2577。离子m/z 299.2577(C18H35O3)是质子化的羟基脂肪酸Y0,说明该SLs分子为bola型且含有C18∶1羟基脂肪酸。综上推测该组分为C18∶1的单乙酰化bola型SLs。
表1、表2和图3分别显示了乙酰化SLs和去乙酰化SLs的同系物组分及3种有代表性的同系物结构图,从表中可以看出,乙酰化SLs的亲水基主要为双乙酰化的槐糖,双乙酰化组分高达92.50%;疏水基以十八碳的疏水基为主,其中十八烯酸疏水基质量分数为47.95%;内酯类型的SLs质量分数为97.86%。去乙酰化SLs同系物中的疏水基中十八烯酸质量分数最高,达到27.87%,亲水基主要为去乙酰化的槐糖,质量分数为90.56%,即使发酵菌株被敲除了乙酰化关键基因,该产物中仍然有9.44%的单乙酰化槐糖脂,可能胞内存在其他低效率的乙酰化途径,具体原因有待进一步研究。去乙酰化SLs同系物中含有内酯型、酸型和bola型SLs,质量分数分别为26.99%、49.98%和23.03%;而乙酰化SLs同系物中以内酯型为主,质量分数达到97.86%,酸型同系物质量分数为2.14%,未发现bola型SLs。这是由于乙酰化SLs菌株和去乙酰化SLs菌株对底物的代谢途径和效率不同。乙酰转移酶基因AT的敲除使大部分SLs分子不再发生乙酰化。在去乙酰化SLs产品中bola型SLs分子质量分数高达23.03%,与Saerens等的研究结果一致。
这是由于乙酰转移酶基因AT的缺失触发了bola型SLs的大量合成,去乙酰化SLs同系物上葡萄糖基转移酶Ⅰ和Ⅱ作用于酸型SLs的羧基端进行糖基化,使其额外连接2个葡萄糖,生成bola型SLs,而乙酰化结构的SLs则不能发生这种途径的糖基化反应。以上结果表明,去乙酰化SLs菌株所产SLs以非乙酰化的酸型SLs为主,并能够合成bola型SLs,具有比乙酰化SLs产品更丰富多样的同系物结构。
表1乙酰化SLs同系物组分和质量分数(Continued from previous page)
表2去乙酰化SLs同系物组分和质量分数(Continued from previous page)
图3 3种有代表性的槐糖脂结构式:(A)双乙酰化内脂型槐糖脂;(B)去乙酰化酸型槐糖脂;(C)去乙酰化bola型槐糖脂