合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 各向异性表面张力条件下定向凝固共晶生长形态稳定性(上)
> 一体化生物复合乳液研制及在碳酸盐岩体积加砂压裂中的应用(一)
> 细胞培养基的理化性质粘滞性及表面张力的内容
> 槐糖脂的属性:脂肪酸底物和混合比例的影响——结果与讨论
> 基于界面张力弛豫法考察羟基取代烷基苯磺酸盐的界面扩张流变性质(三)
> 什么叫界面?基于动态悬滴表征的界面性质精确测定方法
> 液态荔枝视频在线观看视频最新表面结构、工作原理及技术参数
> 降低熔池外沿待破碎液膜区域的表面张力,制备细粒径高氮含量的高氮钢粉末
> 高沸点表面活性剂对纳米LiBr溶液表面张力沸腾温度的影响(下)
> 表面活性剂在口服液体制剂中的应用
推荐新闻Info
-
> 界面张力仪测定不同pH值下椰子球蛋白的界面张力变化
> 内外多腔室等级乳液制备及界面张力影响因素
> 水包油型(O/W)和油包水型(W/O)乳液结构与界面稳定性
> 中性聚合物键合剂(NPBA)与奥克托今(HMX)界面张力测定及应用效果(三)
> 中性聚合物键合剂(NPBA)与奥克托今(HMX)界面张力测定及应用效果(二)
> 中性聚合物键合剂(NPBA)与奥克托今(HMX)界面张力测定及应用效果(一)
> 助剂临界胶束浓度对芒果细菌性角斑病防治药剂表面张力的影响(三)
> 助剂临界胶束浓度对芒果细菌性角斑病防治药剂表面张力的影响(二)
> 助剂临界胶束浓度对芒果细菌性角斑病防治药剂表面张力的影响(一)
> 腰果酚醛树脂嵌段聚醚破乳剂表面/界面性能、油滴破裂速率常数测定(二)
温度、截断半径、模拟分子数对水汽液界面特性的影响规律(二)
来源:河南化工 浏览 944 次 发布时间:2024-11-28
2模拟结果与讨论
2.1温度对密度分布的影响
在模拟分子数N=256和截断半径rc=0.9498 nm的条件下,当温度T=400、450、500、550和610 K时,模拟得到的密度分布如图3所示。统计得到的汽相主体密度ρV、液相主体密度ρL及汽液界面厚度d如表2所示。由图3及表2可见,汽相主体密度和汽液界面厚度随温度的提高而增加,而液相主体密度随温度的提高而减小。
液相主体密度与汽相主体密度之差(ρL-ρV)与温度T的关系如图4所示。可见,液、汽相主体密度之差随温度的升高而降低;从理论上讲,在临界点处,其差值应该趋近于零,这与图3所示的规律一致。液、汽相主体密度之差与温度的关系可以拟合成式(14)的形式。
式中水临界温度Tc=647.3 K,利用表2数据对式(14)进行拟合,得到参数ρ0=1545.8 kg/m3,指数因子x=0.5516。
2.2温度对界面张力的影响
在模拟分子数N=256和截断半径rc=0.9498 nm的条件下,当温度T=400、450、500、550和610 K时,水汽液界面张力的模拟结果见表3。
图5为局部界面张力的分布曲线(500 K)。由图5可见,汽相主体的局部界面张力基本为零;从汽相主体向液相主体的过渡过程中,界面张力值逐渐增加,在汽液界面区达到峰值;在液相主体又在零值附近波动。水汽液界面张力模拟值随温度变化规律如图6所示。
由图6可以看出,随着温度的提高,界面张力降低,模拟值与实验值之间的误差逐渐减小。界面张力与温度的关系可以拟合得到方程(15)。
将表3的数据对式(15)进行拟合,得到的参数γ0=254.3 mN·m-1,指数因子k=1.305。
2.3温度对势能分布的影响
在模拟分子数N=256和截断半径rc=0.9498 nm的条件下,当温度T=400、450、500、550和610 K时,汽相主体总势能UV、液相主体总势能UL及总势能势阱深度ΔU的模拟结果如表4所示。图7为水分子的势能分布曲线(500 K),图8为液相主体区域的势能随温度的变化趋势。
图8液相主体区域的势能随温度的变化趋势
前已述及,水的势能分为L-J势能和静电势能。由图7可以看出,L-J势能均为正值,在液相区形成势垒,势垒高度ΔULJ为液相主体L-J势能与汽相主体L-J势能之差;静电势能均为负值,在液相区形成势阱,势阱深度ΔUe为汽相主体静电势能与液相主体静电势能之差;由于静电势能起主导作用,总势能也为负值,同样在液相区形成势阱,分子之间主要为吸引作用。从图8可以看出,汽相主体势能作用不明显,势垒高度随温度升高而降低,液相主体势能的势阱深度随体系温度的升高而减小。
2.4模拟分子数对模拟结果的影响
在温度500 K和截断半径rc=0.9498 nm的条件下,当模拟分子数N=108、256、500和864时,模拟得到的密度分布见图9。统计得到的汽相主体密度ρV、液相主体密度ρL及汽液界面厚度d见表5。
图9水分子数对密度分布的影响
表5不同水分子数下界面性质的模拟结果
由表5和图9可见,随着模拟分子数的增加,液相主体密度有所增加,液相主体区域宽度加大,汽液界面厚度稍有增大,汽相主体密度有所波动。
2.5截断半径对模拟结果的影响
在温度为500 K和模拟分子数为864的条件下,当截断半径rc=0.7915、0.9498、1.2660 nm时,模拟得到的密度分布如图10所示。统计平均得到的汽相主体密度ρV、液相主体密度ρL及汽液界面厚度d如表6所示。从表6和图10可以看出,随着截断半径的增加,液相主体密度增大,汽相主体密度减小,汽液界面厚度变化不大。
3结论
采用SPC模型,对水汽液界面特性的分子动力学模拟研究结果表明,随着温度的升高,汽相主体密度增加,汽液界面厚度增大,液相主体密度降低,界面张力逐渐减小,液相主体区域势能的势阱深度也逐渐降低。随着模拟分子数的增加,液相主体密度增加,汽液界面厚度稍有增大。随着截断半径的增加,液相主体密度增加,汽液界面厚度变化不大。